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A finite-difference numerical method for an accurate and efftcient solution of transient 
potential flow problems with a free surface is described and illustrated with application to the 
Rayleigh-Taylor instability and the expulsion of liquid from a pipe immersed in a tank. The 
novel feature of the method consists of the adoption of special differentiation formulae to 
calculate the liquid velocity at the free surface with much greater accuracy and stability than 
previously possible. 

1, INTRODUCTION 

The approximation of irrotational motion is often satisfactory for fluid flows of 
practical importance away from solid boundaries, at which the no-slip condition 
results in strong vorticity generation. For free surfaces on which a condition of 
vanishing tangential stress applies, the generation of vorticity takes place at a much 
smaller rate and the approximation of irrotationality can often be maintained up to 
the free surface itself [ 11. This circumstance is particularly fortunate because the 
existence of a velocity potential and an energy integral (the Bernoulli equation) 
considerably simplifies the computation of these flows, and in particular the time 
evolution of the free surface configuration. Even when solid boundaries are present 
potential flow can be a useful approximation, particularly under transient conditions 
in which the viscous boundary layer does not have sufftcient time to penetrate the 
body of the fluid. 

Several methods are now available for the computation of potential flows with a 
free surface. “Spectral” methods based on eigenfunction expansions of the potential 
and of the free surface shape have been described by Moore and Perko [2 ] and 
Catton and Easton [3 1. A finite-difference technique has been successfully applied by 
Chapman and Plesset to problems of bubble dynamics 14-61. The existence of 
variational principles for special cases [7,8] has been exploited by Shima and 
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Nakajima ]9 ] for a spectral approach and by O’Carroll for a finite element one in the 
steady case IlO]. More recently, the boundary integral method has also been 
developed [ 11-13 J. 

The method which is illustrated in the present study is of the finite-difference class 
for unsteady flows and derives directly from that of Chapman and Plesset, over 
which, however, it presents substantial advantages of stability and accuracy. 

Finite-element methods may be superior to finite-difference ones for steady flows. 
Their application to the unsteady case, however, requires the generation of a new 
partition of the computational domain at each time step, with ensuing coding and 
efficiency problems. Spectral methods converge very slowly when the deformation of 
the free surface becomes large, and furthermore they are efficient only for relatively 
simple geometries for which the eigenfuntions and their Hilbert-space inner products 
can be computed analytically. The boundary integral method has proved its efficiency 
in problems in which the boundary (including the free surface) can be approximated 
by a relatively small number of points, below 100 or so. An unavoidable feature of 
this method is the fact that the matrix of the linear system to which it leads is full. 
Therefore a large number of points makes the method rather slow and other alter- 
natives, such as the one described here, may be advantageously considered. Still other 
methods exist, such as the mapping at each time step of the computational domain 
into a simple region of fixed shape in which the potential problem can be solved more 
efficiently [ 141. Such techniques, however, may introduce singularities in the mapping 
transformation which are beyond the user’s control once the free surface has evolved 
into a shape s~gni~cantly different from the original one. Even a brief discussion of 
methods for free surface flows would be incomplete without mention of the MAC 
technique [ 15 ]. However, the present method is really not comparable to the MAC 
approach which deals with the full viscous Navier-Stokes equations. Certainly, due 
to the simplification inherent in the irrotational approximation, potential flow codes 
are faster than MAC codes, but the reliability of the results obviously depends on 
how well this underlying approximation is applicable to the specific physical problem 
under consideration. 

The most important feature of the method we describe is the manner in which 
surface velocities, and hence surface displacements, are computed. The basic idea is 
to use as far as possible information from the interior of the fluid rather than from 
the free surface. The great advantage of this approach stems from the fact that the 
solution of Laplace’s equation is much smoother than the boundary data which are, 
in the present problem, inevitably rather noisy. This procedure avoids the necessity of 
applying some form of smoothing to the surface potential as was done, for instance, 
in [2,3]. 

We demonstrate the capabilities of the method by an application to the two- 
dimensional Rayleigh-Taylor instability, and to the axisymmetric expulsion of a 
liquid from a pipe immersed in a pool. Further details on the method used in these 
applications, together with a listing of the computer program, can be found in [ 16 ]. 
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2. MATHEMATICAL FORMULATION 

For irrotational motion the velocity field u is derivable from a scalar potential 4, 
u = V#, in terms of which the incompressiblity condition reduces to Laplace’s 
equation 

V2#=0. (1) 

The Euler equation can be integrated to give the Bernoulli integral 

~++12+$+ U(x,t)=F(f), (2) 

where U is the potential of the body forces, p and p denote the pressure and density of 
the liquid, and the “constant” of integration F(t) can be specified arbitrarily in a 
convenient way. On all rigid and symmetry boundaries the potential is subject to the 
Neumann condition of vanishing normal gradient 

a4 0 an’ . (3) 

If surface tension is neglected, continuity of normal stresses at the free surface 
requires that 

Pf -Pe = 0, (4) 

where pf is the pressure acting on the fluid side of the interface. The pressure acting 
on the external (with respect to the fluid) side of the interface p, can be a function of 
position and time and will be taken as given. Calculating pf from (2) evaluated at the 
interface and substituting into (4) we obtain 

g+;,vqq2+ UifLF, 
P 

(5) 

where the index i denotes the value at xi, the generic interface point. This form of the 
boundary condition is rather inconvenient for computation. For unsteady flows, 
however, it can be used to evaluate the convective derivative of the potential on the 
free surface 

Integration in time of this equation at each point on the free surface gives the value of 
the velocity potential at that point, which results in a Dirichlet boundary condition on 
the free surface. One last equation is needed to describe the time evolution of the free 



368 PROSPERETTI ANDJACOBS 

surface. This relation is essentially of kinematic origin and expresses the fact that the 
interface points move with the local liquid velocity, i.e., 

dx. --$ = vgqxj, I). 

We may note in closing that, when the motion starts from rest so that 4(x, 0) = 0, 
Eqs. (5) and (6) can be solved approximately by a Taylor series expansion in time. If 
we let 

xj=xi,+tx,,t~t2xj*+~~*, 

$=r$,+~t'#z+-, 

u=nt, t $Pu, + ***, 

then we find that $r, &,..., all satisfy the Laplace equation. Furthermore, upon 
substitution of these expressions into (5) and (7) one readily finds 

Xi) = 0, 

xi2 = v4, lXi,)~ 

~~(Xj~) + U(XiO) = F(0) +. (8) 

Hence, for small times, we find an approximaztion to the free surface con~guration 
given by 

xi(t) = xj(o) + + ~2v#, Ixill + O(l’)T (9) 

where 4, is the solution to Laplace’s equation that satisfies the boundary condition 
(8) at the initial position of the interface. These expressions are useful to start the 
computation. 

3. NUMERKAL PRCXXUX.JRE 

The general structure of the computational procedure is implicit in the preceding 
discussion and is straightforward in principle. At the beginning of a time step the 
position of the free surface and the value of the potential on it are known. The 
Laplace equation (1) is then solved subject to this Dirichlet condition on the free 
surface and to the Neumann condition (2) on the other boundaries. At this stage the 
right-hand sides of (6) and (7) can be computed, the free surface position advanced, 
and the value of the potential on it updated. The cycle is then repeated. We outline 
below the essential computational details for each of these stages. 
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Potential Problem 

It is clear that the solution of the potential problem at each time step in uncoupled 
from the rest of the calculation, and any suitale method can be used for this purpose. 
The results described below have been obtained by approximating the Laplace 
equation by the standard five-point formula and solving the resultant algebraic 
system by the SOR method [ 17, 181. Since in general the intersections of the free 
surface with the grid do not coincide with nodes, the general form of the live-point 
formula with unequal spacing is required near the free surface with a consequent loss 
of precision which is only first order in this region. For computations in the axisym- 
metric case, special care is required for nodes on the axis of symmetry and on the 
next vertical grid line because of the term rpl a#/&- in Laplace’s equation. For points 
on r=O we use 

m z> - m z> + 

h2 
O(h) 

3 

where h is the mesh spacing. For points on r = h we use 

(10) 

Both relationships can be readily proven by expanding the right-hand sides in Taylor 
series and using the fact that, near the axis of symmetry, 

W, z) = $(O, z) + +r2 w + O(r3). 

These formulae were also used by Plesset and Chapman [6]. Finally, the 
homogeneous Neumann condition on the rigid and symmetry boundaries is imposed 
by reflection in the standard way. 

Free-Surface Velocity 

The characteristic feature of the present method concerns the computation of the 
velocity vector at the intersections of the free surface with the grid. To illustrate the 
procedure let us consider the case in which the intersection, point B in Fig. la, is on a 
vertical grid line r = const and the liquid lies below the free surface. The horizontal 
and vertical velocity components at B, ug and uR, are computed according to the 
formulae 

uB = & [(l + @(#, - h> - e(h - !&)I, 
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where indices refer to the points indicated in Fig. 1, 0 = (z, - z,,)/h, and h denotes the 
mesh spacing. Both formulae are accurate to second order in h. Notice that in 
Eq. (12b) we use the value of the potential at four rather than three points, which 
would suffice for an accuracy of order h3. As aleady discussed in [ 19 1, in which 

FIG. 1. Nomenclature for Eqs. (12) when the liquid is below (a) and above (b) the free surface. 
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formulae such as (12b) were first presented, the introduction of a fourth point makes 
it possible to eliminate the factor 0 in the denominator of the three-point, O(h*), 
formula, with a substantial gain of precision when 6 is small (i.e., zB close to z,J. For 
situations in which one of the points needed in Eq. (12a) for U, is outside the domain 
occupied by the liquid the potential there is obtained by a three-point, 0(/z*), 
extrapolation formula. 

It is clear from (12) that in computing V# at the free surface points an effort has 
been made to reduce the use of values of the potential on the free surface to a 
minimum. For instance, in contrast with the method of 14-61, no use has been made 
of the value of 4 at points adjacent to B such as A or C in Fig. la. This feature has 
proven of the utmost importance for the smooth functioning of the method. The 
reason is not difficult to see when it is realized that the numerical treatment of the 
interface inevitably is a relatively major source of error in the entire procedure. This 
point has caused problems in all existing methods for the computation of flows with a 
free surface be they entirely numerical, like the MAC method, or semi-analytical, like 
the methods of [2,3]. The techniques which have been adopted to overcome these 
difficulties amount essentially to a smoothing of the distribution of velocity or 
velocity potential in the neighborhood of each free surface point. Our technique can 
also be viewed in this light, since it is well known that the solution of an elliptic 
problem is by far smoother than the boundary values that it satisfies. For this reason, 
use of the information at points such as Q rather than C in Fig. la in computing the 
velocity at B is preferable, because in this way the effect of the numerical error in C 
is greatly reduced. 

Formulae similar to (12) are readily derived for the other cases. When the inter- 
section, point B, is again on a vertical grid line, but with the liquid above, we may 
still use Eqs. (12) simply by changing the sign of h in (12b) and in the definition of 8 
which then becomes 0 = (zO - zB)/h. The nomenclature of the points in this case is 
shown in Fig. 1 b. For B on a horizontal grid line with the liquid to the right we have 

UB = ; [ 34, - + 8(5 + 38) do + (-4 + 28 + 3e*> f& 

++(1 -e)(2+3e)m,l. (13a) 

‘B = & [tl + e>(& -h’) - %b- - @S>k (13b) 

where 8 = (r,, - rB)/h and the nomenclature is as in Fig. 2a. Finally, when the liquid 
is to the left we may use Eq. (13a) changing -h to h and Eq. (13b) as it stands. In 
this case 8 = (r, - r,)/h and the points are as in Fig. 2b. 

Equations (13) need to be modified when the point in question is adjacent to one of 
the lateral vertical boundaries. For the left boundary, making use of a point B’ 
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symmetrical to B with respect to the boundary (Fig. 3a) and setting, by (3), qSR, = CifR, 
it is easy to prove that 

L. a 
r 

(14) 

FIG. 2. Nomenclature for Eqs. (13) when the liquid is to the right (a) and to the left (b) of the free 
surface. 
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which leads to 

uB&!d, 
rB - r. UW 

to order (r, - ro)*. Using these results we obtain for the vertical velocity when the 
liquid lies below the free surface (Fig. 3a) 

(15b) 

where p = 1 in the axisymmetric case, and p = 0 in the plane one. This difference 

a r 

FIG. 3. Nomenclature for Eqs. (15) and (16) for points near the left (a) and right (b) boundary. 
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arises because in deriving this formula use has been made of the Laplace equation to 
eliminate a’d/az 2. Needless to say, when r(: - r. > h the grid point adjacent to Q is 
used in place of U. Equation (15b) can be verified by Taylor series expansion and use 
of (14) to express u,. Equations (15) are also second-order accurate. When the liquid 
lies above the free surface, Eq. (15a) is applicable directly whereas h must be 
changed to -h in (15b). The relation (15a) holds also when the point is adjacent to 
the right vertical boundary and the liquid is below, whereas (15b) is replaced by 

(16) 

The nomenclature used here is shown in Fig. 3b. When the liquid is above it is 
sufficient to change h to -h. 

The formulae just presented do not cover all possible configurations of the surface 
with respect to the grid. Cases of more extreme distortions will require the use of a 
finer mesh. As already mentioned, an extrapolation of the potential to grid points just 
outside the free surface has been found useful in some cases. Perhaps another 
comment is in order concerning the fact that the velocity formulae given above are all 
second-order accurate, in spite of the fact that part of the computation (namely, the 
discretization of the Laplace equation near the free surface) is only first order. The 
use of the second-order formulae is not required by considerations of formal order, 
but rather by their excellent behavior in terms of stability and error accumulation. 

Advancement in Time 

When the velocity has been computed in the manner described above each free 
surface point is displaced according to a simple Euler discretization of (7) 

~i(t + At) = Xi(t) + V~(~i(t), t) At. (17) 

Since the new position xi(f + dt) in general does not lie on a grid line, linear inter- 
polation between two successive points on the interface is used to find the inter- 
sections of the interface with the grid lines at time t + At. This procedure has been 
found unsatisfactory for the points adjacent to the symmetry boundaries. Here a 
quadratic interpolation is used with the condition of zero derivative at the boundary. 

The value of the potential at time t + At on the displaced free surface point is 
found from (6) discretized as 

#(Xi(t + At), t + At) = #(Xi(t), t) + At g (Xi(t), t), (18) 

with dq)/dt given by (6). The value of the potential at the intersection of the free 
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surface with the grid is found by linear (or, near the symmetry boundaries, quadratic) 
interpolation along the free surface. 

The procedure just described for the advancement in time of a 
single time step. However, if required, this difficulty could be overcome at the 
expense of a somewhat greater complexity in coding and higher order formulae could 
be used. 

4. 

EXAMPLE: RAYLEIGH-TAYLOR INSTABILITY 

As a first example of the application of the method described above we consider 
here the two-dimensional Rayleigh-Taylor instability phenomenon, i.e., the stability 
of the plane interface of a heavy fluid superposed over a lighter one. For this 
application U(x, t) = g . x, where g is the acceleration of gravity, and the function 
F(t) appearing in (5) can be taken as equal to p,/p. The pressure pe exerted by the 
lighter fluid is taken to be constant, and it is the only dynamical effect of this medium 
on the liquid. (Notice that both pe and g can be taken to be arbitrary functions of 

We make use of time without any change in the computational procedure.) 
nondimensional quantities 

x* = L-lx, t* = (lgI/Ly2 t, P” = PIP Ig 
(j* = Igl-‘/2 L-“/?$$, 

I L 

where L is the unit of length taken equal to the size of the computational domain 
normal to g. Stars will be dropped in the following equations. 

The computation is started by prescribing an initial deformation of the free surface 

yi = 1 + 0.1 cos 7rX;. 

Formulae (8) and (9) have been used for the initial time step. The grid spacing 
used for this example was h = 0.05. The initial time step was At = 0.02. This value 
was halved whenever At times the maximum surface velocity exceeded 0.2/z. 

We show in Figs. 4a-f six successive configurations of the free surface at different 
instants of time (g points upwards in these figures). The computation was stopped 
when the upper boundary of the computational domain was reached, but the 
numerical results do not show any apprecibable loss of stability even at such a large 
deformation, which is a factor of 20 greater than the initial one. These figures have 
been drawn by hand. To demonstrate the actual nature of the numerical results we 
show in Fig. 5 an enlargement of the peak of Fig. 4f, in which dots denoted the 
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t-0 t=o5 

0 05 X I 0 0.5 x I 

a b 

FIG. 4. Successive configurations of the free surface in the Rayleigh-Taylor stability problem for 
constant acceleration. 

computed position of the free surface and a faired curve has been drawn through 
them. 

In Fig. 6 we show a graph of the so-called spike and bubble velocities, i.e., of the 
highest and lowest free-surface points. It is clear that the two curves begin to separate 
quite early, thus showing the very limited domain of validity of the linear theory, 
which predicts the two velocities to be equal [20-221. The spike velocity is seen to 
reach rather rapidly the asymptotic regime, where it grows linearly with time with the 
slope of the dashed line shown in the figure. A further proof of the good performance 
of the present numerical method is provided by the remarkable accuracy with which 
the computed points tend to fall on a straight line of the correct slope. Somewhat less 
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t-1 t =I.5 

0 0.5 x I 0 0.5 x I 

C cl 

FIGURE 4 (continued) 

satisfactory appears to be the bubble velocity, which is seen to grow beyond the 
asymptotic value of 0.339 estimated by Garabedian [23] and indicated by the dashed 
horizontal line in the figure. Although the computed bubble velocity does stabilize, 
this occurs around the somewhat larger value of 0.39, a 15% difference with the 
theoretical estimate. It may be remarked that Hirt, Cook, and Butler [ 24 ] also find an 
asymptotic bubble velocity somewhat larger than the theoretical one, and they 
attribute the error to the mesh size. We have performed the same calculation with a 
mesh size twice as large (h = 0.1 length units) and we have found that the bubble 
velocity tends to stabilize around 0.43. Extrapolating to zero mesh size we find an 
asymptotic bubble velocity of about 0.35, in much closer agreement with the 
theoretical result. The residual discrepancy is perhaps to be attributed to the finite 



378 PROSPERETTI AND JACOBS 

3 

0 05 x I 0 05 x I 

e f 

FIGURE 4 (continued) 

time step, although it should be recalled that the value given by Garabedian is itself 
an estimate. The calculations with the larger mesh size h = 0.1 gave a free-surface 
shape very close to that obtained with the finer mesh, except near the bubble apex 
where the two results differed by about 5%. 

It is of some interest to perform a Fourier analysis of the free surface configuration 
by letting 

y(t) = ;A&) + : A, cos krcx, 
k-l 

and computing the functions A,(t) by a least-squares fit. Results of this computation 
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0 0.1 x 0.2 
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FIG. 5. Detail of Fig. 4f showing the actually computed free surface points together with a faired 
curve through them. 

581/51/3-2 
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0 1 t 2 

FIG. 6. Computed bubble and spike velocities for the Rayleigh--Taylor stability problem. The 
broken lines indicate the theoretical slope of the spike velocity and the asymptotic value of the bubble 
velocity. 

J 
2 

FIG. 7. Coefficients of the Fourier series expansion of the free-surface shape for the Rayleigh- 
Taylor stability problem for constant acceleration. The dashed lines represent predictions of the small- 
amplitude nonlinear theory of Nayfeh \2i/. 
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FIG. 8. Coefficients of the Fourier series expansion of the free-surface shape for the Rayleigh- 
Taylor stability problem for exponentially increasing acceleration. 

are shown in Fig. 7 for n = 1, 2, 3, 4 and N = 8. The use of different values of N had 
very little effect on these coefftcients. It should be noted that the numerical error of 
the finite-difference results tends to render inaccurate the A,,% when they are below 
0.02 or so. The value of A, is not shown because it remained constant within this 
noise range. This circumstance is also an indication of the accuracy to which mass is 
conserved in the present numerical method. The dashed lines represent the analytical 
results according to the nonlinear theories of Nayfeh [21] and Rajappa 1251. 

It can be seen from this figure that the time interval during which A, is outside the 
noise range and much larger than A, is quite small. Hence, we do not expect very 
good agreement with the analytical results which assume such a dominance. The 
analytical and numerical results for A, are very close to each other up to t 2 0.5, 
which gives another indication of the accuracy of the ~nitc-difference procedure. 
Similar results for a variable acceleration case g* = e’ are shown in Fig. 8. 

Further details of the application of the method to this problem together with a 
computer program listing can be found in [ 161. 

5. EXAMPLE: THE EXPULSION OF A LIQUID FROM A PIPE IMMERSED IN A TANK 

Our second example concerns an axisymmetric computation which models the 
situation shown in Fig. 9. At t = 0 the pressure in the pipe is raised abruptly over that 
acting on the surface of the tank, and the liquid begins to be expelled from the pipe 
into the tank. Gravity points downward, and we use the same nondimensionaIization 
as the previous example, but now the length unit L. is taken as the radius of the tank. 
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I 
I 

FIG. 9. Configuration for the expulsion of liquid from a pipe immersed in a tank. 

The nondimensional pressure is taken as one in the pipe and as zero outside. For 
simplicity, the free surface in the tank was constrained to remain flat. For the initiaf 
time step we have used the relation (8) in the form 

We show in Fig. 10 the results of some preliminary computations for the free 
surface con~guration at different instants of time. The pipe wall has been taken to 
have a thickness equal to h, which had the value 0.1 for this example. The contour 
labelled C shows the initial development of a peak on the axis of the pipe, which is 
caused by the Rayleigh-Taylor instability due to the acceleration of the free surface. 
This instability would develop more violently if the pressure difference were greater, 
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t 
A 0 
0 0.9 
C 1.0 5 
D II 
E 1.2 
F 13 
G 14 

383 

0 0.5 r 1.0 

FIG. 10. Computed free-surface configuration at different times for the situation of Fig. 9. A rather 
coarse mesh as used for this calculation. The mesh size is also indicated in the figure. 
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t 
A 05 
0 0.7 
C 09 
0 1.05 
E 1.2 
F 1.3 
G 1.4 

0 

A 

FIG. 1 I. Computed vertical velocity along the pipe axis for the situation of Figs. 9 and IO. 
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as shown by experiments [26]. Here the effect of gravity is still large as seen also 
from the rapid rise of the bubble formed at the exit of the pipe due to buoyancy 
effects. The contour of this bubble (again drawn by hand) is not as smooth as that of 
the previous example, an effect of the relative coarsness of the mesh. The bubble 
contour does, however, closely resemble observed shapes 1261. 

Within the available resources, a limiting factor that we encountered in the analysis 
of this problem has been the slowness of convergence of the SOR procedure for the 
solution of the Laplace equation. This has prevented us from carrying out a fuller 
investigation and attempting a comparison with experiment. The problem arises 
because of the particular form of the computational domain with the rigid pipe wall 
slowing down the “propagation of information” throughout it. A different method of 
solution of the discretized Laplace’s equation may be more appropriate for this 
problem. In any case it should be stressed that this aspect of the computation is quite 
independent of the treatment of the free surface, which we feel to be the main point of 
the present study. 

In conclusion, we show in Fig. 11 the computed values of the vertical velocity on 
the pipe axis at different instants of time. The very rapid decrease of the velocity 
outside the pipe clearly demonstrates the strongly divergent nature of the flow. 
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